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GENERALIZED RELAXATION EQUATIONS FOR VIBRATIONAL AND ROTATIONAL 

MOLECULAR KINETICS IN GAS FLOWS 

G. I. Sukhinin UDC 533.011.8 

A system of kinetic equations for the distribution functions of gas particles over quan- 
tum states (over vibrational and rotational molecular levels) is usually used to describe 
nonequilibrium relaxation processes in molecular gases [i]. Here we consider impurity relax- 
ation of a molecular gas in a monatomic gas flow, when molecular collisions can be neglected 
and the distributions of gasdynamic parameters are known. 

The kinetic equations are in this case 

dN~ 
=ng x (K~jN~ -- K~iNO~ (1) dt J 

where N i is the population of the i-th molecular quantum level with energy Ei, satisfying 

the normalization condition ~ Ni-~ i ; Kij(T) are rate constants of molecular transi- 
i 

tions from state j into state i during collisions with atoms of the gas flow, having tempera- 
ture T and density ng and satisfying the detailed balance rule'KijN 3 = KijN'{; N~ are molecular equil- 
ibrium Boltzman distributions over quantum states, N* = giexp(--EikT)/S; gi is the statistical 
weight of the state; and S is the partition function for the system of levels under consider- 

ation, S = "~g~exp(--Ei/kT). 
i 

For known dependences of Kij on quantum numbers and temperature, as well as for known 
distributions of the gasdynamic parameters of the monatomic gas, Eqs. (i) can be solved numer- 
ically. However, the numerical solutions of the kinetic equations are not always convenient, 
as a large amount of calculations is required, particularly if it is necessary to take into 
account the large number of quantum levels. 

Besides,'the shape of the constants Kid(T) is usually unknown, and the absence of reli- 
able constants leads to the necessity of usxng semiempirical dependences with adjustable 
parameters in solving the kinetic equations, selected by comparison with experiment. This 
also increases the bulk of calculations, and the problem of choosing an adequate set of rate 
constants, describing experimental data, remains nonsimple. The matter is that rate con- 
stants with different dependences on quantum numbers and temperature can lead to nearly equal 
distributions in the populations of molecular quantum levels. 

Here we propose to represent the populations N i in the form of an expansion in ortho- 
gonal functions. As a result, the system of kinetic equations (i) transforms to an equivalent 

-I system of moment equations, characterized by some set of time relaxations ~km' which in some 
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cases are simpler to determine experimentally than the rate constants Kij(T). The method 
suggested makes it possible to explain a wide class of exactly solvable kinetic problems, to 
obtain the necessary relaxation condition of an arbitrary molecular system in terms of a 
sequence of Boltzmann states, and to explain the validity condition of the diffusion approxi- 
mation. Besides, for cases of not too large a deviation from equilibrium the population ex- 
pansion can be confined to its first terms, which substantially shortens and simplifies the 
description of nonequilibriummolecular systems. 

Population Expansion in Orthogonal Polynomials. A system of orthogonal functions will 
be sought, starting from the shape of the molecular energy spectrum E i and the corresponding 
spectrum of equilibrium populations N* i. Among the whole molecular system we isolate inde- 
pendent modifications, i.e., molecular groups with energy levels, between which transitions 
are possible during collisions with gas atoms, i.e., molecules for which Kij # 0. For homo- 
nuclear molecules, for example, transitions are almost totally forbidden between ortho- and 
para-modifications, i.e., transitions from even to odd rotational states, and vice versa. 
A number of almost exact selection rules also exists for symmetric and asymmetric tops [2, 
3], leading to substantially independent modifications in vibrational or rotational transi- 
tions. 

We represent the molecular populations for the modification considered in the form of 
the expansion 

Ni N* = ~ ~ ~ (~ )Th(e i ) ,  (2)  
~=0 

where a i = El/@; ~ = O/T; ~ is a characteristic temperature proportional to the rotational or 
vibrational molecular constant, and ~k(Si)~k(i) is a set of functions satisfying the ortho- 
gonality condition 

<~,,2F~> = Y~ N~ ~,o (i) ~ (i) = ~ h .  (3)  
i 

Here the summation is carried out over all energy levels of the modification considered, and 
the brackets <> denote averaging of the functions ~) over the equilibrium molecular distri- 

bution over quantum levels: <~> ~ * The over = Ni~(e 0. averaging nonequilibrium distribution 

functions is denoted by a bar: ~=~Ni~(el). 
i 

h 
We select the functions ~k(~i) in the form of polynomials of order k: Pk(~i) =~ Pk~ 

l=0 

(~)(si~) k, k = 0, i, 2 ..... where the coefficients Pk~ may be temperature dependent. The 
polynomials Tk(ei), for an arbitrary spectrum si, are nonclassical orthogonal polynomials, in- 
troduced in [4], but their properties have not been investigated. 

As shown in [5], the expansion coefficinets Pk~ can be found by solving the system of 

equations Pmm~mnZn+h = 8~, k~m, P00 ~ I. Here Z n are determined in terms of the partition 

function S: 

i O~ =' 

The polynomials ~k(~i) and the coefficients Pk~ satisfy the recurrence relations 

~Irk (e l )  = Pkk  [(ei~) 1<- 
k, ] [  k, 
n~O l~O 7t~ 0 n~O 

1~-1 / m ~2 1-112 

z:,,_m:o J ' 
k--I 

f n ~ l  ~ 0  
k l 

m ~ l + I  n=O 

~t~ t L \Ph- t - l ,  k~--~l" ~ ] J Phk 
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Using the orthogonality conditions, we obtain (see [5]) the relation used below to derive 
the generalized relaxation equations: 

/ ~  d~m~__'~N~ �9 .d~(~; ( t dP~ m) Pm-a,m-*~ (7)  
\ W / - ~  ~ o ~  = pg~ T + ~ %'+ ~p.--q ~.~-x. 

H u l t i p l y i n g  the expansion (2) bY~m(ei)  and summing over a l l  i ,  w i th  account of the 
o r thogona l i t y  re la t i ons  (3) ,  we f i nd  the expression 

= = p~.~ ~ ,  (8 )  

the inverse transformation with respect to expansion (2). The seond part of equality 
(8) implies that the expansion coefficinets are moments of the internal energy, calculated 
from the nonequilibrium distribution function. In particular, we have 

(9) 
~i = V <82> - <8> ~ 

Expressions (2) and (8) can also be represented in the form 

k. k, 

r ,r,(,,)N,/ Z 
2 

- z = f-Nr Tk ( s i)" The where the unitary matrix Cik: was introduced with elements: Cik = Cki 
unitarity of Cik determines one more orthoRonality relation for the polynomials 

VN*N; E v~ (~0 ~ (~) =.E c,~c;~ = t~,~ ( lO)  
h h 

and the equality of norms in the population (for Ni/V~ and momentum (for qk) representa- 

tions ~/Vi2//V~- ~. ~]~, which is a completeness condition for expansion (2). 
i h=O 

Generalized Relaxation Equations. We multiply the right- and left-hand sides of the 
kinetic equation (i) by the polynomial Tm(E i) and sum over all i, replacing the populations 
N i by their expansions (2). Using the orthogonality condition (3) and relation (7), as well 
as taking into account that the polynomials ~m depend on time through their parametric depen- 
dence on temperature, we obtain a system of moment equations 

d.,1,,,/,~t=--,,,]~,o,,,~,,+[( -~ '~'+,,,),1,,,-- '~"-''''-'~ lld(~ 

where the elements of the symmetric matrix ~nhk = ~km are defined in terms of the rate con- 
stants 

( ~  = E ~r~ (~) E g~v~' (~ (~) - v~ (h) = (12) 

= E E g~Nf (~'~, (~) --  %. (i)) ('P'~ (~) - -  ~'~ q)) 
i=o ~>i 

and vanish if k = 0 or m = 0. Equations (ii) are equivalent to (i); more accurately, they 
are a system of kinetic equations written in a different basis, since the populations N i are 
related to the moments qk by the linear unitary transformation (2). 

Consider (Ii) for the first moment ql. Taking into account Eq. (9), we obtain after 
elementary transformations 

~ (~ - <~>) - ng~1~d~p,, (13) 
d . - - ~ = - - n g ~ ] l  - -  . , ,  

It is hence seen that if all matrix elements ~mk for m = 1 and k > 1 vanish, then (13) repre- 
sents the usual relaxation equation for the mean energy of internal degrees of freedom, while 
(ngm11) -I is the energy relaxation time: 

x71 = ng(o n =ng E • KijN~ (qr (0 -- W~ (]))2 = ng (<~> -- <e>~) -x E ~. KijN~ (81 -- ej) ~. 
i = O j < i  i = 0 j < i  

T h e r e f o r e  t he  whole system (11) i s  c a l l e d  g e n e r a l i z e d  r e l a x a t i o n  e q u a t i o n s  or  t h e  r e l a x a t i o n  
r e p r e s e n t a t i o n  ( 1 ) ,  wh i l e  t h e  m a t r i x  mmk i s  c a l l e d  t h e  r e l a x a t i o n  m a t r i x .  
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The system of obtained generalized relaxation equations is most convenient for use 
under conditions of insignificant deviation from equilbrium, when the moments qk satisfy the 
system of inequalities 1 >> ql >> q2 > .... This condition makes it possible to truncate the 
system (Ii) and restrict the solution to the first few equations, while at the same time, in 
(i) it is necessary to solve a system of equations of substantially larger size. In a num- 
ber of cases the relaxation matrix mmk is diagonal, making it possible to obtain directly a 
solution of system (ii) under arbitrary conditions (the system (i) always has a nondiagonal 
structure, even for one-quantumtransitions). The diagonal elements ~ are always positive, 
which follows from definition (12). The nondiagonal elements ~k, due to the fact that in 
expression (12) the polynomials $~(~i) and ~k(~i) "oscillate" out of phase, decay quickly 
with increasing difference [k - m|. This makes it possible to use effectively methods of 
perturbation theory. The generalized relaxation equations can also be used to solve the 
opposite problem, i.e., to determine the relaxation matrix elements Wmk and primarily the 

---- i) " 
relaxation time T l (ngml -l 

Knowledge of the relaxation matrix makes it possible to determine the transition rate 
constants Kij. Indeed, multiplying ~mk in expression (12) by NqNp~m(P)~k(q)summingover m 

and k, and taking into acount the orthogonality reation (i0), we find 7V~N~ ~ ~F~ (p)~F~ (q) = 

* * whence K~jN~ 6qp --K~Nq , 
J 

K~q --- --  N~ E E ~ (P) ~Fk (q), p =/= q, 
h : l  m : l  

E K~jN; = N;' E E o.~hV~ (p) V~ (p). 

(14) 

The last equality also follows directly from (14). Relationship (14) makes it possible to 
explain a wide range of constants, leading to the splitting of generalized relaxation equations 
(~i). In the simplest case, when~mk = ~11~mk, from (i0) and (14) we directly obtain Kpq = 
N~11 for p # q. 

Expressions (12) and (14) make it possible to clarify the reason for difficulties en- 
countered in determining Kij in relaxation processes under moderate deviation from equil- 
ibrium. Under these conditlons the populations Nj are well described by the first few terms 
in expansion (2). The evolution of nk for small k is determined by the lowest elements of 
a~m k. These ~mk values, found from experimental data with the use of system (ii), can be 
represented with a given accuracy by means of expression (12) by various sets of Kij. if, 
however, there exist a priori theoretical considerations concerning the dependence o~ the 
constants Kij(T ) on quantum numbers and on temperature, the values of ~mk obtained can serve 
to refine the parameters of the selected model. 

On the other hand, as seen from Eq. (14), knowledge of a restricted number of a~n k does 
not uniquely determine Kij. However, "natural" assumptions about the dependence Of mmk on the 
subscripts m and k and on temperature makes it possible to find a set of model constants, 
correctly describing the relaxation of lower moments qk" 

To illustrate the use of the generalized relaxation equations, we consider a number of 
problems for specific energy spectra E i and model shapes Kij , particularly for a harmonic 
oscillator and a rigid rotor. 

Harmonic Oscillator. we study the relaxation of a system of harmonic oscillators.. Due 
to its relative simplicity and importance, this problem has been investigated quite well (see 
[I, 6]), and therefore can serve as a benchmark test for the method suggested in this study. 
The harmonic oscillator has an equivalent energy spectrum gi = Ei/~e = i (we omit the con- 
stant energy shift ~e/2) for all levels). The partition function for the harmonic oscilla- 
tor equals S = (i - e-~) -I (~ = ~e/kT, and w e is the vibrational quantum of the oscilla- 
tor). 

Using expressions (4)-(6), after a substantial number of transformations we obtain 

�9 k(i) = e -~pI2 ~ (i ~B~vpvpv (15) 

where C~ = k!/[(k - v)!v!]. Expression (15) coincides, accurately within normalization, with 
the definition of Gottlieb polynomials s [6]: ~k(i) = exp(k~/2)s ). 

The elements mmk for a harmonic oscillator are easily determined in the one-quantum 
approximation, when for transitions from state i the nonvanishing rate constants are Ki_l, i = 
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iK01, Ki+z, i = (i + l)K01e-$. Substituting them into (12) and using the definition for 

the polynomials ~m(i) for the harmonic oscillator ~Fm(i)---- ~ pmn~ni n, we find 

~mh ----- K0,(1 -- e-~)m6mk = m~118mh. (16) 

Thus, the relaxation matrix ~mk is diagonal for a harmonic oscillator, Eqs. (ii) are decoupled 
in this case, and the solution is easily found. The result for the case of a thermal bath 
(~ = const) is particularly simple. Equations (Ii) reduce then to d~m/dt =-mNm/~x, where 
the energy relaxation time T 1 for a: harmonic oscillator is introduced: T I = (ngmlz) -I = - 
[ngK01(l - e-8)] -I. It is seen that each moment Nm relaxes with a time T m = ~z/m. The solu- 

tion of system (ii) acquires the form ~m = n~ exp(-mt/~z), ~]~=~N~(t=O)IFk(i), Ni(t)---- 

~]~k(i)/V~ exp(--kt/~), which, accurately within the notation, coincides with the results of 
h 

[6] (see also [i], p. 80). 

High-Temperature Rotor Approximation. Consider the model of a rigid rotor, describing 
the rotation of diatomic or linear polyatomic molecules. The energy spectrum of a rotor is 
gi = Ei/kO = i(i + I), ]cO----~V2I (I is the moment of inertia of the rotor). The statistical 
weight for the rotor is gi = 2i + I. For all molecules we practically have O ~ 10 K (excep- 
tions are only hydrogen-containing molecules, such as H2, D~, HD, HF, and OH, for which the char- 
acteristic rotational temperatures are O = 85.6; 43; 64; 30; and 25 K, respectively). There- 
fore, it is natural to confine oneself to the high-temperature limit, i.e., T~ 20 or ~ <<i, 
when, in calculating the sum over energy states by the modification under consideration, one 
can transform to integration (the continuous approximation) 

~ m h  ~ - $  y de/(e),: (17) 

where ~ = 1 and 2 for heteronuclear and homonuclear molecules. 

In the high-temperature approximation the partition function of the rotor is proportional 
to temperature:: S N T/O = ~-~ (the proportionality coefficient may differ from unity for homo- 
nuclear molecules). It follows from (4) that <sn> = n!8-n, or Zn = n!. Using (6), it is 
easily shown that 

p~ = ( _  i)t k~ ( 18 ) 
( k - / ) l  ll 2': 

i . e . ,  the polynomials ~k(Ci) co inc ide ,  wi thin  the  h igh- tempera ture  approximation, with the 
Laguerre polynomials:  

h 

kl (e~) t L~ (e~). (19) ~ (e~) = ~ (-- I)' (~- ~): ~I-----' -- 

Taking into account (19), the generalized relaxation equation acquires the form 

d t .  = m ( ~ - -  ~m-1)~ ~7--  ng __ ~h~h ,  (20) 

and the relaxation matrix in the continuous approximation, replacing summation by integration 
according to rule (17), leads to the form 

~ = ~ dxe -~ dzP(z, z) e-" (L~(z + z) -- L~(x))(L~(z + ~ -- L~(x)), (21) 
o 6(x) 

where besides the deactivation rate constants Kij (j > i), we have introduced the energy tran- 
sition probabilities P(x, z) = P(Sg i, ~ej - ~ei) = gi-ZKij for x = ~e i and z = B(ej - gi ). 

The lower limit of integration over z at ~ << 1 equals 6(x) = ~(Ei+ ~ - ei) z 2~/8x, and, as 
a rule, 6(x) can be replaced by zero. The error due to this replacement is easily estimated 
in each specific case. 

Taking into account that ~m(X) is a polynomial of order m, and only the derivatives 
8n~m/~X n with n N m are nonvanishing, expression (21) is written in the form 
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t ~ t OtLh (x) OnLm (z) 
m~h = ~  dxe -X~  ~ n!ll Oz' Oz n . dze-ZP(x,z) n+'. (22)  

0 /=1 n = l  6(x) 

We c a l c u l a t e  Wmk f o r  a number  o f  model  c o n s t a n t s  K i j .  S i n c e  a t  t h e  p r e s e n t  t i m e  t h e  t h e o r y  o f  
r o t a t i o n a l  t r a n s i t i o n s  h a s  no s i m p l e  m o d e l s ,  such  as  t h e  h a r m o n i c  o s c i l l a t o r  model  in  t h e  
t h e o r y  o f  v i b r a t i o n a l  r e l a x a t i o n ,  we t e s t  t h e  mos t  w i d e l y  u s e d  s e m i - e m p i r i c a l  d e p e n d e n c e s  f o r  
r a t e  c o n s t a n t s  [ 7 ] .  

F i r s t  c o n s i d e r  t h e  c a s e  in  wh ich  t h e  t r a n s i t i o n  p r o b a b i l i t y  P ( x ,  z )  depends  o n l y  on t h e  
energy difference, i.e., P(x, z) = P(~ It is precisely to this shape that the most 
widely used semi-empirical dependences of rate constants - power law and exponential - reduce 
[7]. 

For P(~ = Bz -I we easily obtain [5], taking account of properties of Laguerre polyno- 
mials, 

h 
B (l~) i 

r 13 ~ 6 m a .  (23) 
/ = l  

Thus, the transition rate constants 

Kij = --~ I ej --  e, I ( p  (x, z) = B (1~) z-i) (24)  

in the high-temperature approximation lead to a diagonal relaxation matrix ~mk, and, conse- 
quently, to a decoupling of the generalized relaxation equations (20). It is necessary to 
emphasize, however, that this result is approximate, unlike the result for a harmonic oscil- 
lator, since by means of (17) we transformed from the discrete to the continuous description. 

In the more general case for power law dependence of the constants on energy difference 

Ko B(D g____j___~ 
= ~I~_~ilv,, ( j>  i), P (x, z)= Bz-V (25)  

w i t h  ~ # 1, b u t  u < 2, one can  a l s o  c a r r y  o u t  t h e  i n t e g r a t i o n  in  e x p r e s s i o n s  ( 2 1 ) ,  ( 2 2 ) ,  f o r  
t h e  r e l a x a t i o n  m a t r i x  

h--1 
B ~.~.~ r ( , ~ - - i + ~ - - i - - p ) r ( , 1 - - t + k - - l - - p ) r ( l - - ~ - - p )  

~m,,  = fit' ( v -  l)" >_o ~,=o f :~--  T -  p--TR. (k---zn-~p)f 3i 

Comparison of the constants (25) with those calculated by the strong-coupling method, 
r e l a t i v e  t o  r a r e l y  c a l c u l a t e d  e x p e r i m e n t a l  d a t a  f o r  a number  o f  m o l e c u l e s  [ 7 ] ,  shows t h a t  t h e  
parameter u is usually near unity; (0.75 ~ ? ~ 1,4). For ~ z I we then have, accurate within 
terms O(u - i), 

h h 

O}mh ~V[ r l~__k [  [rl~__klJl_n, ]Tg@]g, (Oml '~ -~ 'Z  [ n - - l - - ( ~ - -  t ) ' ~ - - 2 ] .  

It is hence seen that for y # i, nondiagonal elements are generated in the relaxation matrix; 
these elements are small for ]~ - i[ << i, so that a solution of the system of generalized 
relaxation equations is possible by perturbation theory methods. 

In the general case for transition probabilities depending only energy differences (P(x, 

z) = P(~ we obtained from expression (22) mm~ = ~ l+n, where we introduced the 
~=1 /=1 " " 

Dq(0), related to the diffusion coefficients in the energy space: functions 

~o 

~ = .f d'~176 (') < 
0 

anl Sdxo-xOnLm OlLh (--l)l+n p ~ o ( m - - i - - P ) ! ( k - - i - - P ) '  
mh = Ox --W Ox l = ( n - - ~ . l ~ l ) !  (rn-- n--  p)[ (k -- l - -  p)!" 

0 
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In particular, for exponential probabilities P(z) = Be -~z. 

h ~ an l 
B ~ mh (1 + = %~-(n+t+1) (26) 

= n=1 

whence it follows that for I >> i, i.e., when the transition probabilities decrease quickly 
with increasing Aeij, the main contribution to the relaxation matrix is provided by terms 
with n = s = i. 

The Diffusion Approximation. Consider the connection between the generalized relaxa- 
tion equations and the kinetic and diffusion approximations [i, 8, 9]. The diffusion equa- 
tion in the space of energy levels at B = const is represented in the form 

a [e_~l~ D (a) a~ (e)] 

oo 

H e r e  D(g)----~-~fdzP(x,z)exp(--z)z ~ i s  t h e  d i f f u s i o n  c o e f f i c i e n t ,  x = Be,  and  q ( e )  = N ( e ) /  
0 

N*(e) is the population of energy state e, normalized by the equilibrium value. 

We expand q(e) in a series in Laguerre polynomials Lh(efi):q(e)=~BkL1~(~8 ). For the co- 
�9 h 

e f f i c e n t s  r l k t w e ~  t h e n  o b t a i n  i n  t h e  d i f f u s i o n  a p p r o x i m a t i o n  a t  B = c o n s t  dqm/dt=--ngXo)~h, 

where fn~)k=~.Xydxe_=OLh OLin |" -z k = l  Oz Tx ,1 dze P(x, z)z ~. By comparison with the relaxation matrix (22), it 
0 0 

is seen that in the diffusion case the summation over s and n is restricted to one term with 
n = s = I. In the general case only the matrix elements ~zl and w(g) coincide, i.e., the 

II 
energy relaxation times coincide. All remaining matrix elements Wmk and m(g) can differ sub- 

mk 
stantia~ 3, particularly for multi-quantum transitions. For example, for the probability 
(24): ~ = (B/B) min (m, k), which differs substantially from the exact matrix (23). On the mk 
other hand, for P(ei, Ej), which falls with increasing &eij, the relaxation matrix prac- 
fically coincides with the diffusion matrix (for example, for I >> 1 in expression (26)). 

Thus, the diffusion approximation describes the relaxation process only for weak deviation 
from equilibrium, when ql >> q2 > qs,..., and in the absence of multiquantumtransitions in the 
system, when in expression (22) one can neglect terms with m and s larger than unity. 

Relaxation through a Sequence of Boltzmann States. It is well known [i] that the har- 
monic oscillator can relax through a sequence of Boltzmann states if the initial distribution 
has a Boltzmann shape. This property is called canonical: invariance. The question arises 
whether relaxation is possible through a Boltzmann state for other systems of energy levels. 

Consider relaxation of a molecular system in a thermal bath for B = const. Let the in- 
ternal degrees of freedom have a Boltzmann distribution, with T r = ~r -z, whose expansion co- 
efficients are, according to (8), 

k 

N~ = X =(t>~ (ez>~.vk~V, (27 )  
l = 0  

Here the energy moments <es correspond to T r, and all remaining quantities are determined 
by T t. The generalized relaxation equation acquires in this casethe form 

d ~ F ~  (0 ~nrsn\ ~(t)~l/ l\ --dr/,~ P~'~Pt\ /~ = - -  ng mma wtP t  k s 2~. ( 2 8 )  
L n = O  ~=I / = 0  

We use the expansion of the moment <gn>r, determined at the point B = ~r, by a Taylor series 

in powers of: A~ = ~r -- ~: <Sn> r = <Sn>' -~ T 2 ~0"~  (A~)~ ~ "'" With account of (6) 

and the relation 8<en>/8~ = <en><e> - <eft+l>, which follows from (4), and equating in expres- 
sion (28) terms with identical powers of AS, we obtain in the lowest nonvanishing order 

(omh = mmlxSm~." ( 2 9 )  
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This relation is the necessary condition for relaxation through a sequence of Boltzmann 
states and coincides with expression (16), obtained for a harmonic oscillator. 

Condition (29) is particularly easily proved in the high-temperature approximation 
(~ << I), when (18) and <~n> r = n!~r-n are valid. In this case the expansion coefficients 
(27) equal 

~h=~(k_~)!~1~= i--~ = l-rt / (30) 

and exp re s s ion  (28) acqu i res  t h e  form m t - - - ~ t  ] dt "~t ~ n g Z m m h  t- - / '~ '~k whence (29) 
h~l Tt ] ' 

follows directly. 

Consider the condition of canonical invariance for the diffusion approximation. It has 
been shown in [8] that for P(x, z) = xP(1)(z), the rotor system relaxes through a sequence 
of Boltzmann states. The diffusion matrix is in this case 

oo oo 

~',,~t, ~ dxe-~  Oz Oz x dze-~P~l) (z) z 2 

0 0 

(g) D~t) [~-1 ~ dzo-zp(1)(z) z 2, 
0 

i.e., it coincides with condition (29). 

Condition (29) is usually also a sufficient condition for relaxation of system levels 
through a sequence of Boltzmann states if the initial state is a Boltzman state. For a har- 
monic oscillator, the proof of this fact is given in [6], while for the diffusion approxima- 
tion with P(x, z) = xP(1)(z), it is provided in [8]. The proof is easily obtained for a sys- 
tem of rotor with ~ << 1 in the case of a thermal bath. If condition (29) is satisfied, Eqs. 
(ii) for ~ = ~t = const have the solutions 

~1,~ (t) = ]l ~ exp (-- mt /~ l )  , ~'~ = (ngo11) -1. (31) 

Since the initial state has a Boltzmann shape for a temperature of internal degrees of 

freedom Tr(t = 0) = T O , then, as in (30), ~l~ Pmt~<~>u~ l--F, ! �9 Consequently, the 
l=0 

solution (31) retains the Boltzmann shape at any moment of time t > 0: qm(t)= [(i -T0/Tt). 
exp(--t/Tl)] m = (i -- Tr/Tt)m. Here we introduced the temperature of internal degrees of free- 
dom T r = T t + (T o - Tt)exp(--t/Tz). 

We note that if Wmk is diagonal, but the condition of canonical invariance (29) is not 
satisfied, then relaxation does not occur through a sequence of Boltzmann states, even though 
the relaxation equations are valid for the mean energy and for other moments. 
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